Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1518199

RESUMO

Kidneys are critical target organs of COVID-19, but susceptibility and responses to infection remain poorly understood. Here, we combine SARS-CoV-2 variants with genome-edited kidney organoids and clinical data to investigate tropism, mechanism, and therapeutics. SARS-CoV-2 specifically infects organoid proximal tubules among diverse cell types. Infections produce replicating virus, apoptosis, and disrupted cell morphology, features of which are revealed in the context of polycystic kidney disease. Cross-validation of gene expression patterns in organoids reflects proteomic signatures of COVID-19 in the urine of critically ill patients indicating interferon pathway upregulation. SARS-CoV-2 viral variants alpha, beta, gamma, kappa, and delta exhibit comparable levels of infection in organoids. Infection is ameliorated in ACE2-/- organoids and blocked via treatment with de novo-designed spike binder peptides. Collectively, these studies clarify the impact of kidney infection in COVID-19 as reflected in organoids and clinical populations, enabling assessment of viral fitness and emerging therapies.


Assuntos
Injúria Renal Aguda/urina , COVID-19/urina , Túbulos Renais Proximais/virologia , Rim/virologia , Organoides/virologia , SARS-CoV-2/patogenicidade , Injúria Renal Aguda/etiologia , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/genética , Animais , Apoptose , Cápsula Glomerular/citologia , Cápsula Glomerular/virologia , COVID-19/complicações , Chlorocebus aethiops , Feminino , Técnicas de Inativação de Genes , Mortalidade Hospitalar , Hospitalização , Humanos , Rim/metabolismo , Rim/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Pessoa de Meia-Idade , Organoides/metabolismo , Podócitos/virologia , Doenças Renais Policísticas , Proteína Quinase D2/genética , Proteoma , Receptores de Coronavírus/genética , Reprodutibilidade dos Testes , Transcriptoma , Células Vero , Tropismo Viral , Replicação Viral
2.
Neurobiol Dis ; 161: 105561, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1510138

RESUMO

Coronavirus disease 19 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 pathogenesis causes vascular-mediated neurological disorders via elusive mechanisms. SARS-CoV-2 infects host cells via the binding of viral Spike (S) protein to transmembrane receptor, angiotensin-converting enzyme 2 (ACE2). Although brain pericytes were recently shown to abundantly express ACE2 at the neurovascular interface, their response to SARS-CoV-2 S protein is still to be elucidated. Using cell-based assays, we found that ACE2 expression in human brain vascular pericytes was increased upon S protein exposure. Pericytes exposed to S protein underwent profound phenotypic changes associated with an elongated and contracted morphology accompanied with an enhanced expression of contractile and myofibrogenic proteins, such as α-smooth muscle actin (α-SMA), fibronectin, collagen I, and neurogenic locus notch homolog protein-3 (NOTCH3). On the functional level, S protein exposure promoted the acquisition of calcium (Ca2+) signature of contractile ensheathing pericytes characterized by highly regular oscillatory Ca2+ fluctuations. Furthermore, S protein induced lipid peroxidation, oxidative and nitrosative stress in pericytes as well as triggered an immune reaction translated by activation of nuclear factor-kappa-B (NF-κB) signaling pathway, which was potentiated by hypoxia, a condition associated with vascular comorbidities that exacerbate COVID-19 pathogenesis. S protein exposure combined to hypoxia enhanced the production of pro-inflammatory cytokines involved in immune cell activation and trafficking, namely macrophage migration inhibitory factor (MIF). Using transgenic mice expressing the human ACE2 that recognizes S protein, we observed that the intranasal infection with SARS-CoV-2 rapidly induced hypoxic/ischemic-like pericyte reactivity in the brain of transgenic mice, accompanied with an increased vascular expression of ACE2. Moreover, we found that SARS-CoV-2 S protein accumulated in the intranasal cavity reached the brain of mice in which the nasal mucosa is deregulated. Collectively, these findings suggest that SARS-CoV-2 S protein impairs the vascular and immune regulatory functions of brain pericytes, which may account for vascular-mediated brain damage. Our study provides a better understanding for the mechanisms underlying cerebrovascular disorders in COVID-19, paving the way to develop new therapeutic interventions.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Encéfalo/metabolismo , COVID-19/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Pericitos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Actinas/metabolismo , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Animais , Encéfalo/irrigação sanguínea , COVID-19/fisiopatologia , Sinalização do Cálcio , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Humanos , Hipóxia-Isquemia Encefálica/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Miofibroblastos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Mucosa Nasal , Estresse Nitrosativo , Estresse Oxidativo , Pericitos/citologia , Pericitos/efeitos dos fármacos , Fenótipo , Receptor Notch3/metabolismo , Receptores de Coronavírus/efeitos dos fármacos , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/farmacologia
3.
Eur J Clin Invest ; 52(2): e13685, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-1440744

RESUMO

BACKGROUND: Obesity was consistently associated with a poor prognosis in patients with COVID-19. Epigenetic mechanisms were proposed as the link between obesity and comorbidities risk. AIM: To evaluate the methylation levels of angiotensin-converting enzyme 2 (ACE2) gene, the main entry receptor of SARS-CoV-2, in different depots of adipose tissue (AT) and leukocytes (PBMCs) in obesity and after weight loss therapy based on a very-low-calorie ketogenic diet (VLCKD), a balanced hypocaloric diet (HCD) or bariatric surgery (BS). MATERIALS AND METHODS: DNA methylation levels of ACE2 were extracted from our data sets generated by the hybridization of subcutaneous (SAT) (n = 32) or visceral (VAT; n = 32) adipose tissue, and PBMCs (n = 34) samples in Infinium HumanMethylation450 BeadChips. Data were compared based on the degree of obesity and after 4-6 months of weight loss either by following a nutritional or surgical treatment and correlated with ACE2 transcript levels. RESULTS: As compared with normal weight, VAT from patients with obesity showed higher ACE2 methylation levels. These differences were mirrored in PBMCs but not in SAT. The observed obesity-associated methylation of ACE2 was reversed after VLCKD and HCD but not after BS. Among the studied CpG sites, cg16734967 and cg21598868, located at the promoter, were the most affected and correlated with BMI. The observed DNA methylation pattern was inversely correlated with ACE2 expression. CONCLUSION: Obesity-related VAT shows hypermethylation and downregulation of the ACE2 gene that is mirrored in PBMCs and is restored after nutritional weight reduction therapy. The results warrant the necessity to further evaluate its implication for COVID-19 pathogenesis.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Gordura Intra-Abdominal/metabolismo , Leucócitos Mononucleares/metabolismo , Obesidade/genética , Receptores de Coronavírus/genética , Gordura Subcutânea/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Cirurgia Bariátrica , COVID-19 , Metilação de DNA , Dieta Cetogênica , Dieta Redutora , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/terapia , Obesidade Mórbida/genética , Obesidade Mórbida/metabolismo , Obesidade Mórbida/terapia , Receptores de Coronavírus/metabolismo , SARS-CoV-2 , Redução de Peso
4.
PLoS Pathog ; 17(6): e1009683, 2021 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1282318

RESUMO

COVID-19 is a global crisis of unimagined dimensions. Currently, Remedesivir is only fully licensed FDA therapeutic. A major target of the vaccine effort is the SARS-CoV-2 spike-hACE2 interaction, and assessment of efficacy relies on time consuming neutralization assay. Here, we developed a cell fusion assay based upon spike-hACE2 interaction. The system was tested by transient co-transfection of 293T cells, which demonstrated good correlation with standard spike pseudotyping for inhibition by sera and biologics. Then established stable cell lines were very well behaved and gave even better correlation with pseudotyping results, after a short, overnight co-incubation. Results with the stable cell fusion assay also correlated well with those of a live virus assay. In summary we have established a rapid, reliable, and reproducible cell fusion assay that will serve to complement the other neutralization assays currently in use, is easy to implement in most laboratories, and may serve as the basis for high throughput screens to identify inhibitors of SARS-CoV-2 virus-cell binding and entry.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Bioensaio/métodos , COVID-19/virologia , Receptores de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/genética , COVID-19/sangue , Fusão Celular , Células HEK293 , Humanos , Receptores de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/genética , Transfecção , Ligação Viral
5.
Int Immunopharmacol ; 95: 107493, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1263296

RESUMO

The novel coronavirus disease (COVID-19) a global pandemic outbreak is an emerging new virus accountable for respiratory illness caused by SARS-CoV-2, originated in Wuhan city, Hubei province China, urgently calls to adopt prevention and intervention strategies. Several viral epidemics such as severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 to 2003 and H1N1 influenza in 2009 were reported since last two decades. Moreover, the Saudi Arabia was the epicenter for Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The CoVs are large family with single-stranded RNA viruses (+ssRNA). Genome sequence of 2019-nCoV, shows relatively different homology from other coronavirus subtypes, categorized in betacoronavirus and possibly found from strain of bats. The COVID-19 composed of exposed densely glycosylated spike protein (S) determines virus binding and infiltrate into host cells as well as initiate protective host immune response. Recently published reviews on the emerging SARS-CoV-2 have mainly focused on its structure, development of the outbreak, relevant precautions and management trials. Currently, there is an urgency of pharmacological intervention to combat this deadly infectious disease. Elucidation of molecular mechanism of COVID-19 becomes necessary. Based on the current literature and understanding, the aim of this review is to provide current genome structure, etiology, clinical prognosis as well as to explore the viral receptor binding together functional insight of SARS-CoV-2 infection (COVID-19) with treatment and preventive measures.


Assuntos
COVID-19/etiologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , Animais , COVID-19/diagnóstico , COVID-19/transmissão , Vacinas contra COVID-19/uso terapêutico , Cloroquina/uso terapêutico , Genoma Viral , Humanos , Receptores de Coronavírus/química , Receptores de Coronavírus/genética , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Ligação Viral , Tratamento Farmacológico da COVID-19
6.
Science ; 373(6552)2021 07 16.
Artigo em Inglês | MEDLINE | ID: covidwho-1262378

RESUMO

The COVID-19 pandemic has revealed the pronounced vulnerability of the elderly and chronically ill to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced morbidity and mortality. Cellular senescence contributes to inflammation, multiple chronic diseases, and age-related dysfunction, but effects on responses to viral infection are unclear. Here, we demonstrate that senescent cells (SnCs) become hyper-inflammatory in response to pathogen-associated molecular patterns (PAMPs), including SARS-CoV-2 spike protein-1, increasing expression of viral entry proteins and reducing antiviral gene expression in non-SnCs through a paracrine mechanism. Old mice acutely infected with pathogens that included a SARS-CoV-2-related mouse ß-coronavirus experienced increased senescence and inflammation, with nearly 100% mortality. Targeting SnCs by using senolytic drugs before or after pathogen exposure significantly reduced mortality, cellular senescence, and inflammatory markers and increased antiviral antibodies. Thus, reducing the SnC burden in diseased or aged individuals should enhance resilience and reduce mortality after viral infection, including that of SARS-CoV-2.


Assuntos
Envelhecimento , Senescência Celular/efeitos dos fármacos , Infecções por Coronavirus/mortalidade , Flavonóis/uso terapêutico , Moléculas com Motivos Associados a Patógenos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , COVID-19/imunologia , COVID-19/mortalidade , Linhagem Celular , Infecções por Coronavirus/imunologia , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Feminino , Flavonóis/farmacologia , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/imunologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , Organismos Livres de Patógenos Específicos , Tratamento Farmacológico da COVID-19
7.
mBio ; 12(3)2021 05 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1225697

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino-acid fragment of the 1,273-amino-acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here, we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD is expressed inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) is expressed markedly more efficiently and generates a more potent neutralizing responses as a DNA vaccine antigen than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers, such as a Helicobacter pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.IMPORTANCE All available vaccines for coronavirus disease 2019 (COVID-19) express or deliver the full-length SARS-CoV-2 spike (S) protein. We show that this antigen is not optimal, consistent with observations that the vast majority of the neutralizing response to the virus is focused on the S-protein receptor-binding domain (RBD). However, this RBD is not expressed well as an independent domain, especially when expressed as a fusion protein with a multivalent scaffold. We therefore engineered a more highly expressed form of the SARS-CoV-2 RBD by introducing four glycosylation sites into a face of the RBD normally occluded in the full S protein. We show that this engineered protein, gRBD, is more immunogenic than the wild-type RBD or the full-length S protein in both genetic and protein-delivered vaccines.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Vacinas contra COVID-19/imunologia , Imunogenicidade da Vacina , Receptores de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Sítios de Ligação , Vacinas contra COVID-19/química , Feminino , Engenharia Genética , Glicosilação , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Receptores de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Conjugadas/genética , Vacinas Conjugadas/imunologia , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia
8.
J Gen Virol ; 102(5)2021 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1219293

RESUMO

SARS-CoV-2 is the causative agent of COVID-19 and human infections have resulted in a global health emergency. Small animal models that reproduce key elements of SARS-CoV-2 human infections are needed to rigorously screen candidate drugs to mitigate severe disease and prevent the spread of SARS-CoV-2. We and others have reported that transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the Keratin 18 (K18) promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge. Here we report that some infected mice that survive challenge have residual pulmonary damages and persistent brain infection on day 28 post-infection despite the presence of anti-SARS-COV-2 neutralizing antibodies. Because of the hypersensitivity of K18-hACE2 mice to SARS-CoV-2 and the propensity of virus to infect the brain, we sought to determine if anti-infective biologics could protect against disease in this model system. We demonstrate that anti-SARS-CoV-2 human convalescent plasma protects K18-hACE2 against severe disease. All control mice succumbed to disease by day 7; however, all treated mice survived infection without observable signs of disease. In marked contrast to control mice, viral antigen and lesions were reduced or absent from lungs and absent in brains of antibody-treated mice. Our findings support the use of K18-hACE2 mice for protective efficacy studies of anti-SARS-CoV-2 medical countermeasures (MCMs). They also support the use of this system to study SARS-CoV-2 persistence and host recovery.


Assuntos
COVID-19/terapia , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/virologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Encéfalo/patologia , Encéfalo/virologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Modelos Animais de Doenças , Feminino , Humanos , Imunização Passiva , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Carga Viral , Replicação Viral , Soroterapia para COVID-19
9.
J Clin Pathol ; 74(5): 307-313, 2021 May.
Artigo em Inglês | MEDLINE | ID: covidwho-1194224

RESUMO

AIMS: The recent emergence of novel, pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a global health emergency. The coronaviral entry requires the spike (S)-protein for attachment to the host cell surface, and employs human angiotensin-converting enzyme 2 (hACE2) for entry and transmembrane protease serine 2 (TMPRSS2) for S-protein priming. Although coronaviruses undergo evolution by mutating themselves, it is also essential to know the host genetic factors. Here, we describe the single nucleotide variations (SNVs) in human ACE2 and TMPRSS2. METHODS: The genetic variants derived from five population-sequencing projects were classified by variant type, allele frequency (AF), ethnic group and estimated pathogenicity. The SNVs in SARS-CoV-2/hACE2 contact residues were investigated. The genetic variability was normalised using non-linear regression and the total number of SNVs was estimated by the derived formulas. RESULTS: We detected 349 and 551 SNVs in ACE2 and TMPRSS2, respectively, in a total of 156 513 individuals. The vast majority (>97%) of the SNVs were very rare (AF <0.1%) and population-specific, and were computationally estimated to be more frequently deleterious than the SNVs with high AF. These SNVs were distributed throughout the coding regions; some ACE2 variants were located in the SARS-CoV-2/hACE2 contact residues, with a hemizygous state occurring in males. Using regression analysis, the total numbers of genetic variations in ACE2 and TMPRSS2 were 1.1×103 and 1.5×103, respectively, for a population of one million people. CONCLUSION: The majority of SNVs in ACE2 and TMPRSS2 are rare, population-specific and deleterious, and a multitude of very rare SNVs may explain different susceptibility to SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Receptores de Coronavírus/genética , Serina Endopeptidases/genética , Infecções por Coronavirus/virologia , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Humanos
11.
Nature ; 588(7838): 466-472, 2020 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1075229

RESUMO

Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies.


Assuntos
Miocárdio/citologia , Análise de Célula Única , Transcriptoma , Adipócitos/classificação , Adipócitos/metabolismo , Adulto , Enzima de Conversão de Angiotensina 2/análise , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Epitélio , Feminino , Fibroblastos/classificação , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Átrios do Coração/anatomia & histologia , Átrios do Coração/citologia , Átrios do Coração/inervação , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/citologia , Ventrículos do Coração/inervação , Homeostase/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miócitos Cardíacos/classificação , Miócitos Cardíacos/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Pericitos/classificação , Pericitos/metabolismo , Receptores de Coronavírus/análise , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Células Estromais/classificação , Células Estromais/metabolismo
12.
Eur J Heart Fail ; 22(12): 2248-2257, 2020 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1070736

RESUMO

AIMS: Coronavirus disease 2019 (COVID-19) is a widespread pandemic with an increased morbidity and mortality, especially for patients with cardiovascular diseases. Angiotensin-converting enzyme 2 (ACE2) has been identified as necessary cell entry point for SARS-CoV-2. Previous animal studies have demonstrated an increased ACE2 expression following treatment with either angiotensin-converting enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARB) that have led to a massive precariousness regarding the optimal cardiovascular therapy during this pandemic. METHODS AND RESULTS: We have measured ACE2 mRNA expression using real-time quantitative polymerase chain reaction in atrial biopsies of 81 patients undergoing coronary artery bypass grafting and we compared 62 patients that received ACEi/ARB vs. 19 patients that were not ACEi/ARB-treated. We found atrial ACE2 mRNA expression to be significantly increased in patients treated with an ACEi or an ARB, independent of potential confounding comorbidities. Interestingly, the cardiac ACE2 mRNA expression correlated significantly with the expression in white blood cells of 22 patients encouraging further evaluation if the latter may be used as a surrogate for the former. Similarly, analysis of 18 ventricular biopsies revealed a significant and independent increase in ACE2 mRNA expression in patients with end-stage heart failure that were treated with ACEi/ARB. On the other hand, cardiac unloading with a left ventricular assist device significantly reduced ventricular ACE2 mRNA expression. CONCLUSION: Treatment with ACEi/ARB is independently associated with an increased myocardial ACE2 mRNA expression in patients with coronary artery disease and in patients with end-stage heart failure. Further trials are needed to test whether this association is deleterious for patients with COVID-19, or possibly protective. Nevertheless, haemodynamic factors seem to be equally important for regulation of cardiac ACE2 mRNA expression.


Assuntos
Antagonistas de Receptores de Angiotensina/uso terapêutico , Enzima de Conversão de Angiotensina 2/genética , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19 , Leucócitos/metabolismo , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Receptores de Coronavírus/genética , Idoso , Ponte de Artéria Coronária , Doença da Artéria Coronariana/cirurgia , Feminino , Insuficiência Cardíaca/terapia , Coração Auxiliar , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
13.
Iran J Allergy Asthma Immunol ; 19(5): 456-470, 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1068112

RESUMO

The new coronavirus, known as "SARS-CoV-2"; is the cause of one of the most prevalent infectious viral diseases that was recently announced pandemic by the world health organization. Ongoing research in the fields of prevention, management, and therapy establishes a functional scaffold for clinics during the time of crisis. To obtain this goal, it is necessary that all pathophysiologic aspects of COVID-19 from infection to predisposing backgrounds of infection be identified, so that all the ambiguities of researchers regarding transmission mechanisms, variable clinical manifestation, and therapeutic response can be solved. Here, we firstly discuss about the homology screening between nCoV-2019 and beta-coronavirus family using phylogenetic analyses. Secondly, we analyzed the viral motifs to show that viral entry into the host cells requires a primary activation step performed by FURIN and FURIN-like-mediated enzymatic cleavage on the structural glycoprotein. The cleavage increases viral performance by 1000 folds. We then present a comprehensive view on host cells and the significance of gene variants affecting activation enzymes, supportive entry, and spread mechanisms in humans including renin-angiotensin-aldosterone system (RAAS) a pathway results in certain phenotypes or exacerbate infection-related phenotypes in different organs, hence causes variable clinical manifestations. This is followed by discussing about the importance of personalized medicine in nCoV-2019 exposure. Moreover, chemical drugs prescribed for individuals affected with COVID-19, as well as genes involved in drug transport and metabolisms are reviewed as a prelude to drug response. Finally, we suggest some therapeutic approaches developed based on new methods and technology such as anti-sense therapy and antibodies.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Furina/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Enzima de Conversão de Angiotensina 2/metabolismo , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Betacoronavirus/genética , COVID-19/fisiopatologia , COVID-19/transmissão , Inibidores Enzimáticos/uso terapêutico , Furina/metabolismo , Predisposição Genética para Doença , Genoma Humano , Genoma Viral , Humanos , Hidroxicloroquina/uso terapêutico , Filogenia , Medicina de Precisão , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , Sistema Renina-Angiotensina/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Tratamento Farmacológico da COVID-19
15.
Diabetes ; 70(3): 759-771, 2021 03.
Artigo em Inglês | MEDLINE | ID: covidwho-976150

RESUMO

The causes of the increased risk of severe coronavirus disease 2019 (COVID-19) in people with diabetes are unclear. It has been speculated that renin-angiotensin system (RAS) blockers may promote COVID-19 by increasing ACE2, which severe acute respiratory syndrome coronavirus 2 uses to enter host cells, along with the host protease TMPRSS2. Taking a reverse translational approach and by combining in situ hybridization, primary cell isolation, immunoblotting, quantitative RT-PCR, and liquid chromatography-tandem mass spectrometry, we studied lung and kidney ACE2 and TMPRSS2 in diabetic mice mimicking host factors linked to severe COVID-19. In healthy young mice, neither the ACE inhibitor ramipril nor the AT1 receptor blocker telmisartan affected lung or kidney ACE2 or TMPRSS2, except for a small increase in kidney ACE2 protein with ramipril. In contrast, mice with comorbid diabetes (aging, high-fat diet, and streptozotocin-induced diabetes) had heightened lung ACE2 and TMPRSS2 protein levels and increased lung ACE2 activity. None of these parameters were affected by RAS blockade. ACE2 was similarly upregulated in the kidneys of mice with comorbid diabetes compared with aged controls, whereas TMPRSS2 (primarily distal nephron) was highest in telmisartan-treated animals. Upregulation of lung ACE2 activity in comorbid diabetes may contribute to an increased risk of severe COVID-19. This upregulation is driven by comorbidity and not by RAS blockade.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Rim/metabolismo , Pulmão/metabolismo , Serina Endopeptidases/genética , Fatores Etários , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , COVID-19 , Immunoblotting , Hibridização In Situ , Rim/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Ramipril/farmacologia , Receptores de Coronavírus/efeitos dos fármacos , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Telmisartan/farmacologia
16.
Am J Physiol Heart Circ Physiol ; 320(1): H296-H304, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: covidwho-961166

RESUMO

Biological sex is increasingly recognized as a critical determinant of health and disease, particularly relevant to the topical COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. Epidemiological data and observational reports from both the original SARS epidemic and the most recent COVID-19 pandemic have a common feature: males are more likely to exhibit enhanced disease severity and mortality than females. Sex differences in cardiovascular disease and COVID-19 share mechanistic foundations, namely, the involvement of both the innate immune system and the canonical renin-angiotensin system (RAS). Immunological differences suggest that females mount a rapid and aggressive innate immune response, and the attenuated antiviral response in males may confer enhanced susceptibility to severe disease. Furthermore, the angiotensin-converting enzyme 2 (ACE2) is involved in disease pathogenesis in cardiovascular disease and COVID-19, either to serve as a protective mechanism by deactivating the RAS or as the receptor for viral entry, respectively. Loss of membrane ACE2 and a corresponding increase in plasma ACE2 are associated with worsened cardiovascular disease outcomes, a mechanism attributed to a disintegrin and metalloproteinase (ADAM17). SARS-CoV-2 infection also leads to ADAM17 activation, a positive feedback cycle that exacerbates ACE2 loss. Therefore, the relationship between cardiovascular disease and COVID-19 is critically dependent on the loss of membrane ACE2 by ADAM17-mediated proteolytic cleavage. This article explores potential mechanisms involved in COVID-19 that may contribute to sex-specific susceptibility focusing on the innate immune system and the RAS, namely, genetics and sex hormones. Finally, we highlight here the added challenges of gender in the COVID-19 pandemic.


Assuntos
Imunidade Adaptativa/imunologia , Androgênios/imunologia , Enzima de Conversão de Angiotensina 2/genética , COVID-19/imunologia , Estrogênios/imunologia , Imunidade Inata/imunologia , Receptores de Coronavírus/genética , Proteína ADAM17/metabolismo , Imunidade Adaptativa/genética , Androgênios/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/mortalidade , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Estrogênios/metabolismo , Feminino , Genes Ligados ao Cromossomo X/genética , Genes Ligados ao Cromossomo X/imunologia , Humanos , Imunidade Inata/genética , Masculino , Regiões Promotoras Genéticas , Receptores de Coronavírus/metabolismo , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/imunologia , Elementos de Resposta/genética , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Caracteres Sexuais , Fatores Sexuais , Inativação do Cromossomo X
17.
Eur J Clin Invest ; 51(5): e13463, 2021 May.
Artigo em Inglês | MEDLINE | ID: covidwho-949358

RESUMO

AIMS: Obesity, diabetes and cardiovascular disease are associated with COVID-19 risk and severity. Because epicardial adipose tissue (EAT) expresses ACE2, we wanted to identify the main factors associated with ACE2 levels and its cleavage enzyme, ADAM17, in epicardial fat. MATERIALS AND METHODS: Epicardial and subcutaneous fat biopsies were obtained from 43 patients who underwent open-heart surgery. From 36 patients, biopsies were used for RNA expression analysis by real-time PCR of ACE1, ACE2 and ADAM17. From 8 patients, stromal vascular cells were submitted to adipogenesis or used for studying the treatment effects on gene expression levels. Soluble ACE2 was determined in supernatants by ELISA. RESULTS: Epicardial fat biopsies expressed higher levels of ACE2 (1.53 [1.49-1.61] vs 1.51 [1.47-1.56] a.u., P < .05) and lower ADAM17 than subcutaneous fat (1.67 [1.65-1.70] vs 1.70 [1.66-1.74] a.u., P < .001). Both genes were increased in epicardial fat from patients with type 2 diabetes mellitus (T2DM) (1.62 [1.50-2.28] vs 1.52 [1.49-1.55] a.u., P = .05 for ACE2 and 1.68 [1.66-1.78] vs 1.66 [1.63-1.69] a.u., P < .05 for ADAM17). Logistic regression analysis determined that T2DM was the main associated factor with epicardial ACE2 levels (P < .01). The highest ACE2 levels were found on patients with diabetes and obesity. ACE1 and ACE2 levels were not upregulated by antidiabetic treatment (metformin, insulin or thiazolidinedione). Its cellular levels, which were higher in epicardial than in subcutaneous stromal cells (1.61 [1.55-1.63] vs 1 [1-1.34]), were not correlated with the soluble ACE2. CONCLUSION: Epicardial fat cells expressed higher levels of ACE2 in comparison with subcutaneous fat cells, which is enhanced by diabetes and obesity presence in patients with cardiovascular disease. Both might be risk factors for SARS-CoV-2 infection.


Assuntos
Proteína ADAM17/genética , Enzima de Conversão de Angiotensina 2/genética , Diabetes Mellitus Tipo 2/genética , Obesidade/genética , Pericárdio/metabolismo , Células Estromais/metabolismo , Gordura Subcutânea/metabolismo , Adipogenia/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Procedimentos Cirúrgicos Cardíacos , Ponte de Artéria Coronária , Feminino , Implante de Prótese de Valva Cardíaca , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Modelos Logísticos , Masculino , Metformina/uso terapêutico , Pessoa de Meia-Idade , Peptidil Dipeptidase A , Pericárdio/citologia , RNA Mensageiro/metabolismo , Receptores de Coronavírus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/metabolismo , Gordura Subcutânea/citologia , Tiazolidinedionas/uso terapêutico
18.
Allergy ; 76(3): 789-803, 2021 03.
Artigo em Inglês | MEDLINE | ID: covidwho-933959

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry factors, ACE2 and TMPRSS2, are highly expressed in nasal epithelial cells. However, the association between SARS-CoV-2 and nasal inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP) has not been investigated. We thus investigated the expression of SARS-CoV-2 entry factors in nasal tissues of CRSwNP patients, and their associations with inflammatory endotypes of CRSwNP. METHODS: The expression of ACE2 and TMPRSS2 was assessed in nasal tissues of control subjects and eosinophilic CRSwNP (ECRSwNP) and nonECRSwNP patients. The correlations between ACE2/TMPRSS2 expression and inflammatory indices of CRSwNP endotypes were evaluated. Regulation of ACE2/TMPRSS2 expression by inflammatory cytokines and glucocorticoids was investigated. RESULTS: ACE2 expression was significantly increased in nasal tissues of nonECRSwNP patients compared to ECRSwNP patients and control subjects, and positively correlated with the expression of IFN-γ, but negatively correlated with tissue infiltrated eosinophils, and expression of IL5 and IL13. IFN-γ up-regulated ACE2 expression while glucocorticoid attenuated this increase in cultured nasal epithelial cells. Genes co-expressed with ACE2 were enriched in pathways relating to defence response to virus in nasal tissue. TMPRSS2 expression was decreased in nasal tissues of CRSwNP patients compared to control subjects and not correlated with the inflammatory endotypes of CRSwNP. Glucocorticoid treatment decreased ACE2 expression in nasal tissues of nonECRSwNP patients, but not in ECRSwNP patients, whereas TMPRSS2 expression was not affected. CONCLUSION: These findings indicate that ACE2 expression, regulated by IFN-γ, is increased in nasal tissues of nonECRSwNP patients and positively correlates with type 1 inflammation.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/etiologia , Pólipos Nasais/enzimologia , Receptores de Coronavírus/genética , Rinite/enzimologia , Sinusite/enzimologia , Adulto , Células Cultivadas , Doença Crônica , Feminino , Regulação Enzimológica da Expressão Gênica , Glucocorticoides/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/imunologia , Rinite/imunologia , Serina Endopeptidases/genética , Sinusite/imunologia
19.
Nat Genet ; 52(12): 1283-1293, 2020 12.
Artigo em Inglês | MEDLINE | ID: covidwho-880695

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, utilizes angiotensin-converting enzyme 2 (ACE2) for entry into target cells. ACE2 has been proposed as an interferon-stimulated gene (ISG). Thus, interferon-induced variability in ACE2 expression levels could be important for susceptibility to COVID-19 or its outcomes. Here, we report the discovery of a novel, transcriptionally independent truncated isoform of ACE2, which we designate as deltaACE2 (dACE2). We demonstrate that dACE2, but not ACE2, is an ISG. In The Cancer Genome Atlas, the expression of dACE2 was enriched in squamous tumors of the respiratory, gastrointestinal and urogenital tracts. In vitro, dACE2, which lacks 356 amino-terminal amino acids, was non-functional in binding the SARS-CoV-2 spike protein and as a carboxypeptidase. Our results suggest that the ISG-type induction of dACE2 in IFN-high conditions created by treatments, an inflammatory tumor microenvironment or viral co-infections is unlikely to increase the cellular entry of SARS-CoV-2 and promote infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Interferons/metabolismo , Vírus de RNA/fisiologia , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Linhagem Celular , Indução Enzimática , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Receptores de Coronavírus/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo
20.
Biochem Biophys Res Commun ; 533(4): 867-871, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: covidwho-756807

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been discovered as the pathogenic cause of the coronavirus disease 19 (COVID-19). Cellular entry of SARS-CoV-2 are mediated by the spike glycoprotein of virus, and the host specific receptors and proteases. Recently, besides pulmonary complications as the chief symptom, investigations have also revealed that SARS-CoV-2 can trigger neurological manifestations. Herein, to investigate the expression level of receptors and related proteases is important for understanding the neuropathy in COVID-19. We determined the expression levels of receptor ACE2 and CD147, and serine protease TMPRSS2 in human and mouse brain cell lines and mouse different region of brain tissues with qRT-PCR and Western blot. The results showed that the expression pattern of all them was very different to that of lung. ACE2 is lower but CD147 is higher expressed in mostly brain cell lines and mouse brain tissues comparing with lung cell line and tissue, and TMPRSS2 has consistent expression in brain cell lines and mouse lung tissues. It is suggested that SARS-CoV-2 might have a different way of infection to cerebral nervous system. Our finding will offer the clues to predict the possibility of SARS-CoV-2 infection to human brain nervous system and pathogenicity.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Basigina/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , Basigina/genética , Linhagem Celular , Humanos , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Coronavírus/genética , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA